386 research outputs found

    Charged hadrons production in p-p and Pb-Pb interactions at the ALICE experiment

    Get PDF
    The aim of the ALICE experiment at the LHC is the study of the nuclear matter under conditions of extreme energy density and temperature. Under these conditions a deconfined phase, in which quarks and gluons are no longer confined to individual nucleons, the Quark Gluon Plasma, is predicted by Lattice-QCD. In this context the precise measurement of charged particles spectra produced in heavy ions and proton-proton collisions is a fundamental tool to study the physics of the Quark Gluon Plasma. After a brief review of ALICE identification techniques to extract particle yields, we present the identified pions, kaons and protons spectra obtained in p-p (√s = 7TeV) and Pb-Pb (√sNN = 2.76TeV) collisions

    rCASC implementation in Laniakea: porting containerization-based-reproducibility to a cloud Galaxy on-demand platform

    Get PDF
    Integrating rCASC in Laniakea: rCASC, Cluster Analysis of Single Cells [Alessandri et al. BioRxiv], is part of the reproducible-bioinformatics.org project and provides single cell analysis functionalities within the reproducible rules described by Sandve et al. [PLoS Comp Biol. 2013]. Laniakea [Tangaro et al. BioRxiv Bioinformatics] provides the possibility to automate the creation of Galaxy-based virtualized environments through an easy setup procedure, providing an on-demand workspace ready to be used by life scientists and bioinformaticians. The final goal is to offer rCASC as a Galaxy flavor in the Laniakea Galaxy on-demand environment

    Laniakea@ReCaS: an ELIXIR-ITALY Galaxyon-demand cloud service

    Get PDF
    Although several Galaxy public services are available, a private Galaxy instance is still mandatory or preferable for several use cases including heavy workloads, data privacy concerns or particular customization needs. Cloud computing technologies provide a viable way to deploy Galaxy private instances, freeing users from the onerous deployment and maintenance of local IT infrastructures. In the last few years, ELIXIR-IT led the development of Laniakea, a software framework that facilitates the provisioning of on-demand Galaxy instances as a cloud service over e-infrastructures. The user interacts with a Laniakea service through a web front-end that allows to configure and launch a production-grade Galaxy instance in a straightforward way. Through the interface, the user can deploy Galaxy instances over single VMs or virtual clusters, link them to shared reference data volumes and plain or encrypted volumes for storing data. A selection of \u201cflavours\u201d, that is Galaxy instances pre-configured with sets of tools for specific tasks, is also available. When the users is satisfied, Laniakea takes oved and deploys the desired Galaxy instance over the cloud, providing a public IP and full administrative privileges over the new instance. In Dec-2018, we launched the beta-test phase of the first Laniakea-based Galaxy on-demand ELIXIR-IT service: Laniakea@ReCaS. After six months of helpful testing, we are now ready to announce the production phase of this service. Access to the service will be provided on a per-project basis through an open-ended call defining terms and conditions, project proposals will be evaluated by a scientific and technical board. Accepted proposals will be granted a package of computational resources for running on-demand Galaxy instances for a duration compatible with the project requirements

    Laniakea: a Galaxy-on-demand Provider Platform Through Cloud Technologies

    Get PDF
    Galaxy is rapidly becoming the de facto standard workflow manager for bioinformatics. Although several Galaxy public services are currently available, the usage of a private Galaxy instance is still mandatory or preferable for several use cases, including heavy workloads, data privacy concerns or particular customization needs. In this context, cloud computing technologies and infrastructures can provide a powerful and scalable solution to avoid the onerous deployment and maintenance of a local hardware and software infrastructure. Laniakea is a software framework that facilitates the provisioning of on-demand Galaxy instances as a cloud service over e-infrastructures, by leveraging on the open source software catalogue developed by the INDIGO-DataCloud H2020 project, which aimed to make cloud e-infrastructures more accessible by scientific communities. End-users interact with Laniakea through a web front-end that allows a general setup of a Galaxy instance. The deployment of the virtual hardware and of the Galaxy software ecosystem is subsequently performed by the INDIGO Platform as a Service layer. At the end of the process, the user gains access to a private, production-grade, fully customizable, Galaxy virtual instance. Laniakea features the deployment of a stand-alone or cluster backed Galaxy instances, shared reference data volumes, encrypted data volumes and rapid development of novel Galaxy flavours for specific tasks. We present here the latest development iteration of Laniakea, introducing a novel and strongly configurable web interface that facilitates a more straightforward customisation of the user experience through human readable YAML syntax and a reworked encryption procedure that exploits Hashicorp Vault as encryption keys management system

    Laniakea : an open solution to provide Galaxy "on-demand" instances over heterogeneous cloud infrastructures

    Get PDF
    Background: While the popular workflow manager Galaxy is currently made available through several publicly accessible servers, there are scenarios where users can be better served by full administrative control over a private Galaxy instance, including, but not limited to, concerns about data privacy, customisation needs, prioritisation of particular job types, tools development, and training activities. In such cases, a cloud-based Galaxy virtual instance represents an alternative that equips the user with complete control over the Galaxy instance itself without the burden of the hardware and software infrastructure involved in running and maintaining a Galaxy server. Results: We present Laniakea, a complete software solution to set up a \u201cGalaxy on-demand\u201d platform as a service. Building on the INDIGO-DataCloud software stack, Laniakea can be deployed over common cloud architectures usually supported both by public and private e-infrastructures. The user interacts with a Laniakea-based service through a simple front-end that allows a general setup of a Galaxy instance, and then Laniakea takes care of the automatic deployment of the virtual hardware and the software components. At the end of the process, the user gains access with full administrative privileges to a private, production-grade, fully customisable, Galaxy virtual instance and to the underlying virtual machine (VM). Laniakea features deployment of single-server or cluster-backed Galaxy instances, sharing of reference data across multiple instances, data volume encryption, and support for VM image-based, Docker-based, and Ansible recipe-based Galaxy deployments. A Laniakea-based Galaxy on-demand service, named Laniakea@ReCaS, is currently hosted at the ELIXIR-IT ReCaS cloud facility. Conclusions: Laniakea offers to scientific e-infrastructures a complete and easy-to-use software solution to provide a Galaxy on-demand service to their users. Laniakea-based cloud services will help in making Galaxy more accessible to a broader user base by removing most of the burdens involved in deploying and running a Galaxy service. In turn, this will facilitate the adoption of Galaxy in scenarios where classic public instances do not represent an optimal solution. Finally, the implementation of Laniakea can be easily adapted and expanded to support different services and platforms beyond Galaxy

    VINYL: Variant prIoritizatioN bY survivaL analysis

    Get PDF
    Motivation: Clinical applications of genome re\uadsequencing technologies typically generate large amounts of data that need to be carefully annotated and interpreted to identify genetic variants associated with pathological conditions. In this context, accurate and reproducible methods for the functional annotation and prioritization of genetic variants are of fundamental importance, especially when large volumes of data \uad like those produced by modern sequencing technologies \uad are involved. Results: In this paper, we present VINYL, a highly accurate and fully automated system for the functional annotation and prioritization of genetic variants in large scale clinical studies. Extensive analyses of both real and simulated datasets suggest that VINYL show higher accuracy and sensitivity when compared to equivalent state of the art methods, allowing the rapid and systematic identification of potentially pathogenic variants in different experimental settings

    A Computer Aided Detection system for mammographic images implemented on a GRID infrastructure

    Full text link
    The use of an automatic system for the analysis of mammographic images has proven to be very useful to radiologists in the investigation of breast cancer, especially in the framework of mammographic-screening programs. A breast neoplasia is often marked by the presence of microcalcification clusters and massive lesions in the mammogram: hence the need for tools able to recognize such lesions at an early stage. In the framework of the GPCALMA (GRID Platform for Computer Assisted Library for MAmmography) project, the co-working of italian physicists and radiologists built a large distributed database of digitized mammographic images (about 5500 images corresponding to 1650 patients) and developed a CAD (Computer Aided Detection) system, able to make an automatic search of massive lesions and microcalcification clusters. The CAD is implemented in the GPCALMA integrated station, which can be used also for digitization, as archive and to perform statistical analyses. Some GPCALMA integrated stations have already been implemented and are currently on clinical trial in some italian hospitals. The emerging GRID technology can been used to connect the GPCALMA integrated stations operating in different medical centers. The GRID approach will support an effective tele- and co-working between radiologists, cancer specialists and epidemiology experts by allowing remote image analysis and interactive online diagnosis.Comment: 5 pages, 5 figures, to appear in the Proceedings of the 13th IEEE-NPSS Real Time Conference 2003, Montreal, Canada, May 18-23 200

    MRI analysis for Hippocampus segmentation on a distributed infrastructure

    Get PDF
    Medical image computing raises new challenges due to the scale and the complexity of the required analyses. Medical image databases are currently available to supply clinical diagnosis. For instance, it is possible to provide diagnostic information based on an imaging biomarker comparing a single case to the reference group (controls or patients with disease). At the same time many sophisticated and computationally intensive algorithms have been implemented to extract useful information from medical images. Many applications would take great advantage by using scientific workflow technology due to its design, rapid implementation and reuse. However this technology requires a distributed computing infrastructure (such as Grid or Cloud) to be executed efficiently. One of the most used workflow manager for medical image processing is the LONI pipeline (LP), a graphical workbench developed by the Laboratory of Neuro Imaging (http://pipeline.loni.usc.edu). In this article we present a general approach to submit and monitor workflows on distributed infrastructures using LONI Pipeline, including European Grid Infrastructure (EGI) and Torque-based batch farm. In this paper we implemented a complete segmentation pipeline in brain magnetic resonance imaging (MRI). It requires time-consuming and data-intensive processing and for which reducing the computing time is crucial to meet clinical practice constraints. The developed approach is based on web services and can be used for any medical imaging application

    Radiomic analysis in contrast-enhanced spectral mammography for predicting breast cancer histological outcome

    Get PDF
    Contrast-Enhanced Spectral Mammography (CESM) is a recently introduced mammographic method with characteristics particularly suitable for breast cancer radiomic analysis. This work aims to evaluate radiomic features for predicting histological outcome and two cancer molecular subtypes, namely Human Epidermal growth factor Receptor 2 (HER2)-positive and triple-negative. From 52 patients, 68 lesions were identified and confirmed on histological examination. Radiomic analysis was performed on regions of interest (ROIs) selected from both low-energy (LE) and ReCombined (RC) CESM images. Fourteen statistical features were extracted from each ROI. Expression of estrogen receptor (ER) was significantly correlated with variation coefficient and variation range calculated on both LE and RC images; progesterone receptor (PR) with skewness index calculated on LE images; and Ki67 with variation coefficient, variation range, entropy and relative smoothness indices calculated on RC images. HER2 was significantly associated with relative smoothness calculated on LE images, and grading tumor with variation coefficient, entropy and relative smoothness calculated on RC images. Encouraging results for differentiation between ER+/ER−, PR+/PR−, HER2+/HER2−, Ki67+/Ki67−, High-Grade/Low-Grade and TN/NTN were obtained. Specifically, the highest performances were obtained for discriminating HER2+/HER2− (90.87%), ER+/ER− (83.79%) and Ki67+/Ki67− (84.80%). Our results suggest an interesting role for radiomics in CESM to predict histological outcomes and particular tumors’ molecular subtype
    • …
    corecore